aged 18–35 had siblings), we could expect 25% of women to use the pill, 30% to use the injectable and 43% to use no method. By contrast, if all households had 12 extended kinship ties (which is close to the real mean of 11 siblings outside the household), 32% would use the pill and 39% the injectable, and the proportion using none would drop to 27%. The effects of the number of kinship ties on contraceptive choice are modest, yet measurable.

As a means of further exploring the mechanisms through which kinship ties affect choice, the household kinship ties are broken down into sibling ties within the household, sibling ties to other households in the village and sibling ties to households outside the village.* Results from this analysis indicate that siblings within the household have no effect on temporary method choice. Rather, it is kinship ties to other households in the village and kinship ties outside the village that affect choice. Table 3 presents microsimulations based on these results. The number of household kinship ties to other households within the village varies from zero to five; the number of household kinship ties outside the village ranges from two to eight.† (Each case in the data set is allowed to have its actual value on all other variables for these microsimulations.)

When the effects of other explanatory variables are taken into account, kinship ties to households within the village are seen to affect the choice of both the IUD and the injectable. If all households had no kinship ties to other households within the village, we could expect 3% of women sampled to use the IUD, 35% to use the injectable and 33% to use no method. By contrast, if all households had five extended kinship ties within the village, we could expect 23% of women to use the pill, 26% to use the injectable and 43% to use no method. By contrast, if all villages had an average of three extended kinship ties outside the village per household, 31% would use the pill, 38% would use the injectable and the proportion using none would drop to 25%. Thus, when other explanatory variables are taken into account, it appears that in villages with higher average numbers of extended kinship ties outside the village, women are more likely to use modern methods of temporary contraception.

Village-Level Average Kinship Ties

For the final three analyses, village-level measures of average kinship ties among households are introduced into the models. Initial results indicate that village averages of total kinship ties affect contraceptive choice, controlling for all other explanatory variables. Once the average number of kinship ties at the village level is introduced into the model, the effect of household-level kinship ties in the village on IUD use, and the effect of household-level kinship ties outside the village on injection use, disappear (not shown). The effects of household-level kinship ties outside the village on pill use and the effect of household-level kinship ties within the village on injectable use remain, however. With these household-level effects controlled for, the average total number of kinship ties at the village level has a positive effect on both pill and injection use.

In a further examination of the mechanisms through which village-level kinship ties affect choice, the effects of village-level average kinship ties are broken down into village-level average kinship ties within the village and average kinship ties outside the village. Results from this analysis indicate that it is the average kinship ties outside the village that affect both pill and injectable use.

Once again, predicted probabilities based on microsimulations conducted in STATA are examined. In these microsimulations, the value of the village average kinship ties outside the village from one to three are manipulated, while each case in the data set is allowed to have its actual value on all other variables. These simulations clearly demonstrate that average extended kinship ties outside the village have a positive effect on the use of the pill and the injectable (Table 4). If all villages had an average of just one extended kinship tie outside the village per household, we could expect 23% of women to use the pill, 26% to use the injectable and 43% to use no method. By contrast, if all villages had an average of three extended kinship ties outside the village per household, 31% would use the pill, 38% would use the injectable and the proportion using none would drop to 25%. Thus, when other explanatory variables are taken into account, it appears that in villages with higher average numbers of extended kinship ties outside the village, women are more likely to use modern methods of temporary contraception.

Discussion

Within villages in Nang Rong, extended kinship ties among households clearly affect the choice of temporary contraceptive methods of recently married women who are at the early stages of family formation. Not only does the number of ties affect women’s propensity to use modern methods, but the type and location of the extended kinship ties have differential effects on the temporary methods individual women choose.

Household Kinship Ties

To interpret the results regarding the differential effects of household kinship ties both within and outside the village on temporary method choice, it is important to remember the historical context of the availability of temporary methods of contraception in Nang Rong. The injectable

*For these analyses, sibling ties to other villages in Nang Rong, other districts in Buriram and other provinces in Thailand are combined into one variable, “sibling ties outside the village.” Creating one variable eases interpretation and does not affect the results; the effects of the more specific categories were consistent and similar.

†Once again, the values selected for the microsimulations are based on the sample distribution of the independent variable of interest.