areas, because of distance. In more developed countries, this factor is probably much less of a barrier.

The data in Table 2 confirm that levels of unmet need in small towns are generally higher than those in large cities, although differences are small. However, in six out of 10 countries, levels of unmet need were highest in middle-sized communities. In other words, the relationship appears to be U-shaped.

Multivariate Analysis
Results of the multivariate analysis (Table 3, page 78) roughly confirm those obtained in the bivariate analysis. For example, higher levels of unmet need were generally found among men: According to the minimum estimate, men’s unmet need was significantly higher than women’s unmet need, with the differential ranging from 16% greater in Lithuania to 65% greater in Hungary (not shown). Likewise, the minimum estimate of unmet need was significantly elevated in nine of the 10 countries among partners who were in marital or nonmarital unions, in seven countries among older persons, in seven among all parents and in eight among less-educated individuals. Settlement size did not seem to play any systematic role.

However, as gender is known to interact with many factors, it is better to estimate separate models for men and women. Results for minimum estimates are presented in Table 4 (page 79) and for maximum estimates in Table 5. As before, the discussion will focus mostly on minimum estimates.

Country profiles of minimum unmet family planning needs, based on the statistical significance of results obtained in Table 4, vary greatly. Regardless of whether one looks at men or at women, no two countries’ profiles are exactly the same. Also, needs among men are not necessarily always higher than among women, but they are invariably different.

For example, among Belgian men, only those in marital unions were significantly more likely to have an unmet need for family planning; among Belgian women, on the other hand, union status had no significant effect, but women aged 35 or older, those with two children and those with less education all had an elevated likelihood of unmet need. In Italy, in contrast, parity and education were associated with unmet need for both men and women (although in somewhat different ways), while age and union type were significant for women but not for men.

Likewise, patterns in the maximum estimate of unmet need varied widely; both by sex and by country (Table 5). Thus, in the Czech Republic, the maximum measure of unmet need was significantly higher among men in moderate-size towns. In contrast, maximum unmet need among Czech women was elevated for those who were married or living in a consensual union, as well as for those aged 30 or older, but was not affected by settlement size.

Log-likelihood ratios for minimum needs in Bulgaria, Latvia and Lithuania (Table 3) are considerably lower than are those for the other countries. In these three countries, then, factors other than those considered in the probit analyses may also affect variations in unmet need.

One could argue that the “ultimate” indicator of unmet need is induced abortion. Unfortunately, survey data on induced abortion generally underestimate to a considerable degree the true extent to which couples rely on this form of fertility control. This is also true for FFS data. Therefore, it seemed better to use aggregate abortion statistics from official sources, although these are also known to suffer from various shortcomings. Available legal abortion ratios (abortions per 100 live births) that were closest to the year in which the bulk of FFS interviews in each country took place were selected for each country.

These ratios varied widely by country, with Spain (12.9 abortions per 100 live births), France (23.0 per 100) and Italy (24.1 per 100) having relatively low ratios. (All three have incomplete coverage of abortion, however.) The ratios were generally moderate in the Czech Republic (47.7 per 100), Slovenia (56.9 per 100), Hungary (64.3 per 100) and Lithuania (76.0 per 100), and were very high in Latvia (120.1 per 100) and Bulgaria (137.1 per 100). (There is no systematic abortion registration in Belgium.)

In Figure 2, these ratios are plotted against the minimum estimates of unmet need (Table 1). The results clearly suggest the two phenomena are related, at least at the aggregate level. The higher the reliance on induced abortion to resolve unintended pregnancies, the higher the level of unmet need, and vice versa. Moreover, whether one looks at this relationship among men, among women or among both, the association between unmet need and the abortion ratio (as measured using Pearson’s coefficient) is stronger when unmet need is defined as the minimum (.9<r>.8) than as the maximum (.7<r>.6).

Conclusion
Is there an unmet need for family planning in Europe? Comparing as a whole the 10 countries investigated here with developing countries, this question should probably be answered in the negative. Diverting scarce international resources from the problems of developing societies to family planning problems in Europe would seem unwarranted. However, as this analysis has demonstrated, levels of unmet need in some countries with economies in transition—in particular, Bulgaria—surpass some of the lowest levels of unmet need observed in developing countries. This finding would seem to justify retargeting at least some elements of international population assistance efforts.

Additionally, in countries with established market economies, there may still be room for improvement in both the quantity and the quality of family planning services provided. An unmet need of some 9% among Italian men may not appear to be very great. Yet given that Italian men...

(continued on page 88)