The measure also may have disadvantages. It indicates whether a partner considered abortion when he or she learned of the pregnancy, but does not take into account that people’s views may change as a pregnancy progresses. Additionally, a woman’s partner may not learn of a pregnancy as soon as she is aware of it, and the delay may be reflected in his behavior.

We include individual-level controls for maternal, paternal and child characteristics, and for multipartner fertility. Maternal characteristics are education (categorized as less than a high school degree, exactly a high school degree, some college but not a four-year degree, four-year degree or not reported), age (younger than 20, 20–24, 25–29, or 30 or older), race and ethnicity (non-Hispanic black, Hispanic, other non-Hispanic, non-Hispanic white or not reported). Paternal characteristics are similar but also include a category for fathers’ age being unreported. Child characteristics are gender (male, female or not reported) and whether the birth was a multiple one. Month of birth dummies are included, to adjust for any systematic correlations between the births in each hospital and time of the year the data were collected, as well as any systematic differences in the characteristics of parents whose child was born in July (the most common month) and those whose child was born in another month; city of birth is controlled for with fixed effects. Multipartner fertility is characterized according to whether the father has more biological children than the father, the parents have the same number of biological children or this cannot be determined.*

Analytic Techniques

We began by calculating summary statistics for our samples of married and unmarried parents. Then, for the overall samples and for each category of mothers’ reports of having considered abortion, we calculated the distribution of fathers’ reports of whether they considered abortion; using a contingency table chi-square test, we assessed whether these reports and marital status are statistically independent of each other. Next, we examined child health and parental behavior outcomes for both samples by parents’ reports of having considered abortion, using t tests to assess differences between means.

Finally, we examined these outcomes as a function of pregnancy intentions at the time the parent learned of the pregnancy, the individual-level characteristics, and fixed effects for the month of birth and city in which the birth took place. In some specifications, we verified the robustness of our findings by restricting the sample to couples in which both partners completed the baseline survey. Although we focus primarily on parents who were unmarried at the time of their child’s birth, we present some results for the sample of married parents.

For dichotomous outcomes, we present results of multivariate probit analysis and use chi-square statistics to conduct additional hypothesis tests about the coefficients estimated from these models.† We also present the results of least squares regressions predicting birth weight, with the same righthand side variables as in the categorical analysis. Because the sample design was complex, assuming independence among observations might lead to inappropriate conclusions about inference. To avoid this, our standard errors are adjusted for an arbitrary correlation structure within city, as well as being robust to possible heteroskedasticity.

RESULTS

Descriptive Analysis

Married parents in the study have higher levels of education, are older and are less likely to have children with another partner than unmarried parents (Table 1). For example, 38% of married mothers have a four-year college degree, compared with 3% of unmarried mothers; 50% and 15%, respectively, are 30 or older. Roughly one in five unmarried mothers and fathers, but fewer than one in 10 of their married counterparts, have had children with other partners. Married parents are also more likely than unmarried parents to identify themselves as non-Hispanic white (e.g., 43% vs. 11% of fathers) or other

*In the regressions, the omitted reference category for maternal characteristics is non-Hispanic white women who have a four-year college degree and are 30 or older; the omitted reference category for paternal characteristics is non-Hispanic white men who have a four-year college degree and are 30 or older; the omitted category for child characteristics is a female singleton born in July; the omitted category for location is New York; and the omitted fertility category is parents who have the same number of biological children.

†The underlying latent index \(y^*_{is} \) has the basic form \(y^*_{is}=A_{is}\alpha X_{is}+X_{is}\beta+S_{is}+\epsilon_{is} \), where \(\epsilon_{is} \) is distributed standard normal. The observed outcomes \(y_{is} \) are 0 if the latent index \(y^*_{is} \) is less than zero and 1 otherwise. We model the outcome variables \(y_{is} \) as a function of various controls \(X_{is} \) for child i in city s: \(A_{is} \) are our key independent variables (measures of pregnancy intention); \(X_{is} \) are the individual-level controls for the mother, father and child. \(S_{is} \) represent city fixed effects, and \(\epsilon_{is} \) represent unobservable determinants.