Acknowledgments

This appendix was written by Aparna Sundaram and Rubina Hussain, both of the Guttmacher Institute; Zeba Sathar, Gul Rashida and Sabahat Hussain of the Population Council, Islamabad, Pakistan; and Eva Weissman, independent consultant.

Costs and Benefits of Meeting the Contraceptive and Maternal and Newborn Health Needs of Women in Pakistan

Methodology Appendix

Introduction
This document provides the methodology used to estimate the values presented in the report Adding It Up: Costs and Benefits of Meeting the Contraceptive and Maternal and Newborn Health Needs of Women in Pakistan, 2019.1 The report adds to the ongoing Guttmacher Institute effort to estimate the costs and benefits of expanding contraceptive use in specific developing countries. Similar reports have been produced for the Philippines, Uganda, Ethiopia, Burkina Faso, Malawi, Cameroon and Nepal.1–7

Country-level Adding It Up reports have estimated the costs of meeting all women’s needs for modern contraceptives, and they have estimated the benefits of expanded contraceptive services in terms of the number of pregnancies, births, abortions, and maternal and infant deaths averted and disability-adjusted life years (DALYs) saved.

The country-level reports have drawn heavily on the methods and approaches used in the global Adding It Up series of reports, which have estimated the need for and the use, costs and impacts of various sexual and reproductive health services for the major regions and subregions of the developing world. While the basic approach for the Adding It Up analysis has remained unchanged over the years, some country-specific changes to the methodology have been made based on data availability in each country.

This document describes the analytic framework, sources and calculations underlying the Adding It Up estimates for Pakistan. Our objective is to enable users to better understand the results and limitations of the estimates.

We estimated the health impacts for three scenarios:

1) Zero modern contraceptive use. This scenario assumes that none of the women wanting to avoid pregnancy* use a modern contraceptive method. In other words, all current modern method users become nonusers, and the only users of contraception are the current traditional method users. In this scenario, all nonusers and current modern method users are

*We consider the terms “wanting to avoid pregnancy” and “at risk of unintended pregnancy” to be equivalent and use them interchangeably; we abbreviate this term to “@risk” and “not@risk” in our equations.
assumed to have an unmet need, meaning they want to avoid becoming pregnant for at least two years but are not using a modern contraceptive method.

2) **Current contraceptive use.** This scenario represents actual levels of contraceptive use in Pakistan as obtained from the 2017–2018 Pakistan Demographic and Health Survey (PDHS).

3) **All unmet need for modern methods met.** In this scenario, all women wanting to avoid pregnancy—including current nonusers and those who currently use traditional methods—become users of modern methods. The proportions of women using each type of modern method are based on the mix of modern methods used currently. Unmet need for modern contraception is reduced to zero in this scenario.

In all three scenarios, we assumed that the level of use of maternal and newborn health (MNH) care would remain constant at current levels.

In addition, in this report, we estimated the **financial costs and savings** for three scenarios, where we assumed that MNH coverage would be extended to all women in need:

1) Coverage of MNH care and of modern contraception is at current levels (this is the baseline scenario).
2) MNH care is provided to all women who need it, while current levels of modern contraceptive services are maintained.
3) Both MNH care and modern contraceptive services are provided to all women who need them (that is, all unmet need for modern contraception is met).

We recognize that the necessary increases in coverage cannot be achieved immediately, especially because many of them depend on improvements in health service infrastructure. However, we use the same year for all scenarios to demonstrate the changes needed, compared with the current situation.

We conducted all analyses on the costs of care in the public sector under the assumption that it is the government’s mandate to provide these services. In reality, the costs could be higher if a large proportion of women sought these services in the private sector, where costs are quite variable. The costs presented in this report could therefore be considered to be at the lower end or a minimum; they represent what it would cost the government to provide the additional services.

Data Sources
The estimates of the costs and benefits of contraceptive use in Pakistan draw from multiple data sources. Numbers of women in each region in 2017 by marital status, desire to avoid pregnancy and contraceptive use were calculated using data from the 2017–2018 PDHS. The estimates of women aged 15–49 in 2017 were obtained from the 2017 Pakistan National Population and Housing Census.

We calculated numbers of unintended pregnancies at current levels of contraceptive use, as well as for the other scenarios, using contraceptive use failure rates and pregnancy rates for nonusers from the 2017–2018 PDHS and other sources, adjusted to the estimated number of unintended pregnancies in each region in 2017. Pregnancy intendedness and pregnancy outcomes were estimated from regional data on the planning status of recent births from the 2017–2018 PDHS, estimates of unsafe induced abortion rates in 2012 and estimates of the number of miscarriages. We calculated the number of pregnancy-related deaths using a projected estimate of the maternal mortality ratio (MMR) estimated in the 2006–2007 PDHS using a World Health Organization (WHO) regression model.

Estimates of unsafe abortions are based on regional estimates of the abortion rate published jointly by researchers at the Pakistan Population Council and the Guttmacher Institute.

National-level estimates of 2017 pregnancy-related deaths and DALYs among women were obtained from the Institute for Health Metrics and Evaluation.

We estimated the costs of contraceptive and maternal and newborn care using an ingredients-based costing method as follows: For each contraceptive method or health care intervention, we combined the direct costs (in 2017 U.S. dollars) of drugs, supplies, materials, labor and hospitalization with the indirect costs associated with programs and systems to arrive at an annual cost of protection against unintended pregnancy for each woman receiving pregnancy-related medical care. Indirect costs (e.g., overhead and capital expenditure) were based on estimates provided by the United Nations Population Fund (UNFPA). Indirect costs of contraceptives came from UNFPA’s Reproductive Health Interchange database.

We obtained the direct costs of drugs, supplies, materials and labor used for family planning and MNH care interventions from the following sources:

- Drugs and supplies: United Nations Children’s Fund (UNICEF) Supply Catalogue
- Cost of labor (salaries for different categories of medical professionals): Based on derivations from the estimates used in the Essential Package of Health Services for

1Information on sexual activity, contraceptive use and pregnancy desires among unmarried women in Pakistan is not available; our analyses of contraceptive use and needs were based on the behaviors of married women as measured in the PDHS, and all married women were assumed to be sexually active.
Primary Health Care accepted by most of the regions. 22-26

We used the most recently available data, either for 2017, which is the reference year for the analysis, or from the most recently available year projected to 2017. Cost figures are expressed in 2017 U.S. dollars, and all scenarios are calculated as of 2017.

All data used in this project came from publicly available sources and did not contain any individual's identifying information. Consent was therefore not required for these analyses.

Demographic Estimates

1. Population Size and Composition

 a. Total population for Pakistan and for each region, 2017

The total population numbers for each region were obtained from the 2017 Pakistan Population and Housing Census. 9

All provinces (Balochistan, Khyber Pakhtunkwha, Punjab and Sindh) and four other regions and administrative areas (Azad Jammu and Kashmir, Federally Administered Tribal Areas, Gilgit-Baltistan and Islamabad Capital Territory) were included in the analysis. For the purpose of this report, the areas described above will be referred to as regions. In this and subsequent calculations, when regional data or estimates were available, we computed the national number as the sum of the regional numbers.

b. Women aged 15–49 by region, 2017

1b1. The proportions aged 15–49 among all women were applied to the total female population by region. 8,9

\[
\# \hat{\wp}^r(15-49)_{2017}^{region(i)} = \# \text{women (total)}_{2017}^{region(i)} \times \text{% women (15–49)}_{2017}^{region(i)}
\]

1b2. National numbers were computed as the sum of regional numbers.

\[
\# \hat{\wp}^r(15-49)_{2017}^{Pakistan} = \sum \# \hat{\wp}^r(15-49)_{2017}^{region(i)}
\]

c. Women aged 15–49 in each region, by marital and household wealth status, 2017
1c1. We obtained the numbers of women of reproductive age by marital status in each region using the following calculation:

\[
\# \text{ women (15–49)}_{\text{marital status, region(i)}} = \# \text{ women (15–49)}_{\text{region (i)}} \times \% \text{ women}_{\text{marital status, region(i)}},
\]

Data:
1. The percentages married and unmarried among all women for each region were obtained from the 2017–2018 PDHS.⁸
2. The number of women of reproductive age in each region for 2017 was obtained from the 2017–2018 PDHS and the Pakistan Population and Housing Census, as described in 1b1.⁹

1c2. The sum of the region numbers was the total number of women for the country:

\[
\# \text{♀ (15–49)}_{\text{marital status, Pakistan}} = \sum (\# \text{♀ (15–49)}_{\text{region (i)}} \times \% \text{♀}_{\text{marital status, region(i)}})
\]

1c3. In the PDHS, women are categorized according to the wealth of their household relative to other households in the country. Wealth quintiles divide the total household population into fifths (Table 1).

Table 1. Distribution of women in Pakistan aged 15–49 by wealth status

<table>
<thead>
<tr>
<th>Wealth status (quintile)</th>
<th>% of women aged 15–49</th>
</tr>
</thead>
<tbody>
<tr>
<td>First (poorest)</td>
<td>18.9</td>
</tr>
<tr>
<td>Second</td>
<td>21.8</td>
</tr>
<tr>
<td>Third</td>
<td>20.6</td>
</tr>
<tr>
<td>Fourth</td>
<td>19.7</td>
</tr>
<tr>
<td>Fifth (wealthiest)</td>
<td>19.0</td>
</tr>
</tbody>
</table>

We obtained the numbers of women by wealth status, using the following calculation:

\[
\# \text{♀ (15-49)}_{\text{wealth status(i)}} = \# \text{♀ (15-49)}_{\text{Pakistan}} \times \% \text{♀}_{\text{wealth status(i)}}
\]

Data:
1. We obtained the percentages of women by wealth status from the 2017–2018 PDHS.⁸
2. The number of women for all of Pakistan was obtained from the calculations outlined in 1c2.
3. Formulas were applied for each region to obtain the distribution of women by wealth status in each region.

2. Risk for unintended pregnancy and contraceptive use status
a. Definition of key concepts

Risk for unintended pregnancy was defined as follows:

1) Women not at risk for unintended pregnancy: Those who were not sexually active (or unmarried, for Pakistan), who were infecund or who wanted a child within the next two years.

2) Women at risk for unintended pregnancy and seeking to space future births: Those who were fecund and married, and who did not want a child or another child within the next two years. For the purposes of this analysis, we call these women spacers.

3) Women at risk for unintended pregnancy and seeking to limit future births: Those who were married, who were fecund and who did not want another child. For the purposes of this analysis, we call these women limiters.

4) Risk status of women who were pregnant or amenorrheic: Women were considered to be at risk for unintended pregnancy if their current pregnancy or most recent birth was mistimed (i.e., women seeking to space births) or unwanted (i.e., women seeking to limit births).

The concepts used to determine risk for unintended pregnancy were defined as follows:

1) Sexual activity: All currently married women were assumed to be or potentially to be sexually active. Women who were not married were classified as not sexually active per the information available in the PDHS.8 Because of stigma attached to nonmarital sex, the level of sexual activity—and therefore risk for unintended pregnancy—is likely to be underestimated among unmarried women.

2) Fecundity: Married women were classified as infecund if they reported being so at the time of the survey, had had a hysterectomy or were menopausal. We also considered to be infecund those women who were neither pregnant nor in postpartum amenorrhea but who had not had a menstrual period for six or more months, as well as those who were married and not using a contraceptive method during the past five years, but had not had a birth and were not currently pregnant.

3) Childbearing intentions: Intention for future childbearing was defined according to women’s desire for a child (or another child). Among pregnant women, intention was based on whether their current pregnancy was wanted at that time or earlier, mistimed or unwanted.

4) Amenorrhea: Women who were amenorrheic were classified according to the intention status of their last birth.

Contraceptive use status for women at risk was defined as follows:

1This refers to the number of months after childbirth in which women are protected against pregnancy. In Pakistan, the median number of months for postpartum amenorrhea is 3.3 months.8
1) **Modern method users:** This included women who reported using tubal ligation, vasectomy, IUD, injectable, implant, pill, condom, standard days methods and other supply methods. Modern method users could be _spacers_ or _limiters_. If they were using tubal ligation or vasectomy, they were always considered limiters.

2) **Traditional method users:** This included women who reported using periodic abstinence, withdrawal and other non-supply methods. Traditional method users could be _spacers_ or _limiters_.

3) **Nonusers:** Those women who were at risk but using no contraceptive method. Such women were considered to have an unmet need for _spacing_ or for _limiting_, depending on their childbearing intentions.

b. **Risk for unintended pregnancy and contraceptive use status by scenario:**

1. **Current (2017) scenario (scenario 2):**
 We grouped married women of reproductive age by risk of unintended pregnancy and contraceptive use. Each subgroup was further categorized according to region and household wealth quintiles.

 The calculations to compute the numbers of women by each of these subgroups were set up as follows:

 2b1a. Married women not at risk by region:
 \[
 \text{\# of region (i) not@risk} = \text{\# of region (i)} \times \% \text{ of region (i) not@risk}
 \]

 Data:
 1. The number of married women by region was obtained from the calculations outlined in 1c1.
 2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.⁸

 2b1b. For married women at risk by region, we grouped them by whether they were spacers or limiters:
 \[
 \text{\# of region (i) @risk spacers} = \text{\# of region (i)} \times \% \text{ of region (i) @risk, spacers}
 \]
 \[
 \text{\# of region (i) @risk limiters} = \text{\# of region (i)} \times \% \text{ of region (i) @risk, limiters}
 \]

 Data:
 1. The number of women by region was obtained from the calculations outlined in 1c1.
2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.8

2b1b1. We further grouped women at risk as those who have an unmet need for modern contraception, and those who were at risk, but were using modern contraception.

\[
\# \text{♀ met need for modern contraception}_{\text{region (i)}} = \# \text{♀ region (i)} * \% \text{♀ modern method users}_{\text{region (i)}}
\]

\[
\# \text{♀ unmet need for modern contraception}_{\text{region (i)}} = \# \text{♀ region (i)} * \% \text{♀ non-user/trad. users}_{\text{region (i)}}
\]

Data:
1. The number of women by region was obtained from the calculations outlined above in 1c1.
2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.8

2b1c. Women not at risk by wealth status

\[
\# \text{♀ not@risk}_{\text{wealth status (i)}} = \# \text{♀ wealth status (i)} * \% \text{♀ not@risk}_{\text{wealth status (i)}}
\]

Data:
1. The number of women by wealth status was obtained from the calculations outlined in 1c3.
2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.8

2b1d. For women at risk by wealth status, we grouped them by whether they were spacers or limiters:

\[
\# \text{♀ @risk, spacers}_{\text{wealth status (i)}} = \# \text{♀ wealth status (i)} * \% \text{♀ @risk, spacers}_{\text{wealth status (i)}}
\]

\[
\# \text{♀ @risk, limiters}_{\text{wealth status (i)}} = \# \text{♀ wealth status (i)} * \% \text{♀ @risk, limiters}_{\text{wealth status (i)}}
\]

Data:
1. The number of women by wealth status was obtained from the calculations outlined in 1c3.
2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.8

2b1d1. We further grouped women at risk as those who have an unmet need for modern contraception, and those who were at risk, but were using modern contraception.

\[
\# \text{♀ met need for modern contraception}_{\text{WQ (i)}} = \# \text{♀ WQ (i)} * \% \text{♀ modern method users}_{\text{WQ (i)}}
\]

\[
\# \text{♀ unmet need for modern contraception}_{\text{WQ (i)}} = \# \text{♀ WQ (i)} * \% \text{♀ non-user/trad. users}_{\text{WQ (i)}}
\]
Data:
1. The number of women by wealth status was obtained from the calculations outlined in 1c3.
2. The percentages in each subgroup were obtained from the 2017–2018 PDHS.8

Adjustments to values:
The wealth quintiles totals by risk did not match the totals by risk for the regions, due to
differences in data. The differences were less than 0.2%. Therefore, we adjusted the values in
the final tables for wealth status to align them with the region totals. In order to do this, we
first divided region totals (by risk status) by the wealth quintile totals (also by risk status). The
result of this division was multiplied by the result obtained above (2b1c and 2b1d) in each
category.

\[
\text{final } \#_i^{\text{risk,space/limit-spaces,method type}} = \frac{\text{Result of } 2b1c \& 2b1d^* \text{ total } \#_i^{\text{region-spaces,method type}}}{\text{total } \#_i^{\text{wealth status-Pakistan-spaces,method type}}}
\]

2b1e. Contraceptive use status among all women at risk for unintended pregnancy by region:

\[
\#_i^{\text{region-spaces,method type-\text{with met need}}} = \#_i^{\text{region-spaces,method type-@risk}} \times \%_i^{\text{region-spaces,method type-all}}
\]

\[
\#_i^{\text{region-limiters,method type-\text{with met need}}} = \#_i^{\text{region-limiters,method type-@risk}} \times \%_i^{\text{region-limiters,method type-all}}
\]

2b1f. Contraceptive use status among women at risk for unintended pregnancy by wealth
quintile:

\[
\#_i^{\text{wealth status-\text{with met need-spaces,method type}}} = \#_i^{\text{wealth status-@risk}} \times \%_i^{\text{wealth status-all-spaces,method type}}
\]

\[
\#_i^{\text{wealth status-limiters,method category-\text{with met need}}} = \#_i^{\text{wealth status-@risk}} \times \%_i^{\text{wealth status-all-limiters,method category}}
\]

Data:
1. The number of women at risk by region was obtained from the calculations outlined in 2b1b.
2. The number of women at risk by region was obtained from the calculations outlined in 2b1d.
3. The percent of women by region and method category who were spacers/limiters was
obtained from the 2017–2018 PDHS.8
4. The method types for spacers were pill, IUD, injectable, implant, condom, other
modern methods, periodic abstinence, withdrawal and other traditional methods.
5. The method types for limiters included all the methods listed for spacers, plus male and female sterilization.

Adjustments to values for wealth quintiles:
The wealth quintile totals of women at risk by method categories did not match the totals for the regions. Therefore, we adjusted the values in the final tables for wealth status. In order to do this, we first divided region totals for women at risk (by each method category) by the wealth quintile totals for women at risk (also by method categories). The result of this division was multiplied by the result obtained above in 2b1f in each category.

\[
\text{final } \# \text{@risk}_{\text{wealth status}} \text{ (i)} = \text{Result of 2b1f} \times \frac{\text{total } \# \text{@risk}_{\text{region,method }} \text{Pakistan}}{\text{total } \# \text{@risk}_{\text{wealth status,method }} \text{Pakistan}}
\]

2. Risk for unintended pregnancy in alternative contraceptive-use scenarios

The introduction of this report outlined the alternative hypothetical use scenarios. All of them assume that other variables are unchanged, including the number of women aged 15–49 and their distribution by region, household wealth, fecundity and intention to space or limit births.

We computed the contraceptive use status among all women at risk for unintended pregnancy for each of the hypothetical use scenarios. These are discussed below.

Zero modern contraceptive use (scenario 1):

In this scenario, all women at risk for unintended pregnancy either have an unmet need for modern methods or are traditional method users. To calculate the number of women at risk for unintended pregnancy who had an unmet need for modern methods, we added the number of women in the current scenario who were at risk and had an unmet need for a modern method to the number of women in the current scenario who were using modern methods. The number of women using traditional methods was equal to the number of women using traditional methods in the current scenario.

2b2a. By region:

\[
\# \text{@risk}_{\text{spacers/limiters,region(i),scen1}} = \# \text{@risk}_{\text{unmet need,spacers,region(i),scen1}} + \# \text{@risk}_{\text{mod. methods,spacers,region(i),scen1}}
\]

\[
\# \text{@risk}_{\text{unmet need,limiters,region(i),scen1}} = \# \text{@risk}_{\text{unmet need,limiters,region(i),scen1}} + \# \text{@risk}_{\text{mod. methods,limiters,region(i),scen1}}
\]

\[
\# \text{@risk}_{\text{spacers+limiters,region(i),scen1}} = \# \text{@risk}_{\text{unmet need,spacers,region(i),scen1}} + \# \text{@risk}_{\text{mod. methods,limiters,region(i),scen1}}
\]

2b2b. By wealth status:

\[
\# \text{@risk}_{\text{spacers,WQ(i),scen1}} = \# \text{@risk}_{\text{unmet need,spacers,WQ(i),scen1}} + \# \text{@risk}_{\text{mod. methods,spacers,WQ(i),scen1}}
\]

\[
\# \text{@risk}_{\text{unmet need,limiters,WQ(i),scen1}} = \# \text{@risk}_{\text{unmet need,limiters,WQ(i),scen1}} + \# \text{@risk}_{\text{mod. methods,limiters,WQ(i),scen1}}
\]

\[
\# \text{@risk}_{\text{spacers+limiters,WQ(i),scen1}} = \# \text{@risk}_{\text{unmet need,spacers,WQ(i),scen1}} + \# \text{@risk}_{\text{mod. methods,spacers,WQ(i),scen1}}
\]
Data:
1. The data for the region-level calculations come from 2b1b1.
2. The data for the wealth status calculations come from 2b1d1. Additional adjustments to the wealth status estimates were not required for this scenario.

All unmet need met scenario (scenario 3):
In this scenario, all women at risk for an unintended pregnancy are using a modern method, including women who were traditional method users in the current scenario. To calculate the number of women who were modern method users, we summed the total number of method users (modern and traditional) in the current scenario with the total number of women with an unmet need for a modern method in the current scenario.

2b2c. By region:

\[
\# \text{♀ modern method users}_{\text{scen3, region(i)}} = \# \text{♀ method users}_{\text{scen2, region(i)}} + \# \text{♀ non-users}_{\text{scen2, region(i)}}
\]

\[
\# \text{♀ modern method users}_{\text{scen3, region(i)}} = \# \text{♀ modern method users}_{\text{scen3, prov(i)}} \times \left(\frac{\% \text{ users among all ♀ method type}_{\text{scen2, region(i)}}}{\Sigma \% \text{♀ mod meth users of all ♀}_{\text{scen2, region(i)}}} \right)
\]

2b2d. By wealth status:

\[
\# \text{♀ modern method users}_{\text{scen3, WQ(i)}} = \# \text{♀ method users}_{\text{scen2, WQ(i)}} + \# \text{♀ with unmet need}_{\text{scen2, WQ(i)}}
\]

\[
\# \text{♀ modern method users}_{\text{scen3, WQ(i)}} = \# \text{♀ modern method users}_{\text{scen3, WQ(i)}} \times \left(\frac{\# \text{♀ modern method users}_{\text{scen2, WQ(i)}}}{\# \text{♀ modern method users}_{\text{scen2, WQ(i)}}} \right)
\]

Adjustments to values for wealth quintiles:
The wealth quintile totals of women at risk by method categories did not match the totals for the regions. Therefore, we adjusted the values in the final tables for wealth status. In order to do this, we first divided region totals for women at risk (by each method category) by the wealth quintile totals for women at risk (also by method categories). The result of this division was multiplied by the result obtained in 2b2d in each category. The calculation followed the same template as laid out in 2b1f.

3. Current numbers of births, intention status of births and pregnancy outcomes
a. Total pregnancies
This is the sum of conceptions ending in birth, induced abortion and miscarriage. The calculations for obtaining the numbers of each are provided below.

Scenario 2. Current contraceptive use

b. Numbers of births, by region and wealth, 2017
We applied regional general fertility rates from the 2017–2018 PDHS to the 2017 numbers of women aged 15–44 in each region to estimate the number of births, by region, in 2017. The general fertility rate (GFR) is the number of births in each region in the three years preceding the 2017–2018 PDHS per 1,000 women aged 15–44.

3b1. By region:
\[\text{#Births}_{\text{region(i)}}^{all \♀} = \text{#♀}_{\text{region(i)}}^{15−44} \times \frac{GFR_{\text{region(i)}}^{15−44}}{1000} \]

Data:
1. The data on the number of women aged 15–44 by region was obtained from the Pakistan Population and Housing Census and the 2017–2018 PDHS.8,9
2. The general fertility rate was obtained from the 2017–2018 PDHS.

3b2. By wealth status:
\[\text{#Births}_{\text{WQ(i)}}^{all \♀} = \text{#♀}_{\text{WQ(i)}}^{15−49} \times \frac{GFR_{\text{region(i)}}^{15−44}}{1000} \times \frac{\text{#all ♀}_{\text{Pakistan}}^{15−49}}{\text{#all ♀}_{\text{Pakistan}}^{15−44}} \]

Adjustments to values for wealth quintiles:
The wealth quintile totals of births by wealth quintile categories did not match the birth totals for the regions. Therefore, we adjusted the values in the final tables for wealth status. In order to do this, we first divided region totals by the wealth quintile totals. The result of this division was multiplied by the result obtained in 3b2 in each category. The calculation followed the same template as laid out in 2b1f.

c. Planning status of births by region and wealth
We distributed the estimated numbers of births in each region in 2017 according to the planning-status distribution of births reported in the 2017–2018 PDHS.8 To construct this variable, we considered all births in the last three years. This is unlike the PDHS, which considers all births in the last five years.
The planning status of births variable categorizes births according to whether women reported wanting a pregnancy then, wanting a pregnancy later, or not wanting any (additional) births. Births among women who had wanted the pregnancy later are called “mistimed.” Births that resulted from pregnancies that were not wanted at all are called “unwanted.” All other births are called “planned” or “wanted.”

This variable does not include current pregnancies and pregnancies where there is missing data on intention status. This is a departure from the manner in which the PDHS constructs this variable.

We calculated the number of births by intention status as follows:

3c1. By region:

\[
\text{#Wanted births}_{\text{region}(i)} = \text{#Births}_{\text{region}(i)} \times \%\text{Wanted births}_{\text{region}(i)}
\]

\[
\text{#Births mistimed}_{\text{region}(i)} = \text{#Births}_{\text{region}(i)} \times \%\text{Births mistimed}_{\text{region}(i)}
\]

\[
\text{#Births unwanted}_{\text{region}(i)} = \text{#Births}_{\text{region}(i)} \times \%\text{Births unwanted}_{\text{region}(i)}
\]

Data:
1. The data on the number of births to all women by region was obtained from 3b1.
2. The percentage of births by intention status was obtained from the 2017–2018 PDHS.8

d. Number of induced abortions, 2014
We obtained the annual national and regional rate of induced abortions from Sathar et al. (2014).15 The rate of abortions was assumed to be constant for all categories of household wealth status. The number of abortions was obtained by multiplying the abortion rate by the number of women of reproductive age obtained from the census projections.

3d1. Scenario 2 by region:

\[
\text{#induced abortions}_{\text{region}(i)} = \frac{\text{induced abortion rate}_{\text{region}(i)}}{1000} \times \text{#\text{♀}_{\text{region}(i)} 15-49}
\]

Data:
1. We obtained the induced abortion rate from Sathar et al. (2014).15
2. We obtained the number of women of reproductive age from the Pakistan Population and Housing Census and the 2017–2018 PDHS (specified in 1b1).8,9
3d2. Scenario 2 by wealth quintile:

\[\text{#induced abortions}_{WQ(i)} = \frac{\text{induced abortion rate}_{\text{Pakistan}} \times \text{all } \#_{15-49} \text{♀}}{1000} \]

Data:
1. We obtained the induced abortion rate for all women in Pakistan from Sathar et al. (2014).\(^{15}\)
2. The number of women of reproductive age by wealth quintile was obtained from calculations shown in 1c3 above.

Adjustments to values for wealth quintiles:
The wealth quintile totals of induced abortion by wealth quintile categories did not match the induced abortion totals for the regions. Therefore, we adjusted the values in the final tables for wealth status. In order to do this, we first divided region totals by the wealth quintile totals. The result of this division was multiplied by the result obtained in 3d2 in each category. The calculation followed the same template as laid out in 2b1f.

e. Number of miscarriages
Miscarriages resulting from unintended pregnancies are estimated to be equivalent to 20% of pregnancies ending in unintended birth plus 10% of pregnancies ending in induced abortion (all of which are assumed to be unintended).\(^{27}\) These proportions attempt to account for pregnancies that end in miscarriage late enough to be noted by the woman (6–7 weeks after the last menstrual period).

3e1. Miscarriages resulting from unintended pregnancies by region:

\[\text{#miscarriages}_{\text{unwanted conceptions}}_{\text{region}(i)} = \text{#induced abortions}_{\text{reg}(i)} \times 0.1 + (\text{#births mistimed}_{\text{reg}(i)} + \text{#births unwanted}_{\text{reg}(i)}) \times 0.2 \]

Data:
1. The numbers of induced abortions are obtained from calculations shown in 3d1.
2. The numbers of births wanted later and never wanted are obtained from calculations shown in 3c1.

3e2. Miscarriages resulting from intended pregnancies by region:

\[\text{#miscarriageregion}(i)_{\text{wanted conceptions}} = \text{#wanted births}_{\text{reg}(i)} \times 0.2 \]

Data:
1. The numbers of wanted births were obtained from calculations shown in 3c1.

3e3. Miscarriages resulting from unintended pregnancies by wealth quintiles:
#miscarriage_{unwanted conceptions} =
#induced abortions_{WQ(i)} * 0.1 + (#births wanted later_{WQ(i)} + #births never wanted_{WQ(i)}) * 0.2

Data:
1. The number of induced abortions by wealth quintile was obtained from calculations shown in 3d2.
2. The number of births wanted later or never was obtained from calculations shown in 3c3.

3e4. Miscarriages resulting from intended pregnancies by wealth quintile:

#miscarriages_{WQ(i)}^{wanted conceptions} = #wanted births_{WQ(i)}^{all ♀} * 0.2

Data:
1. The number of wanted births were obtained from calculations shown in 3c3.

Adjustments to values for wealth quintiles:
The wealth quintile totals of miscarriages by wealth quintile categories did not match the miscarriage totals for the regions. Therefore, we adjusted the values in the final tables for wealth status. In order to do this, we first divided the region totals by the wealth quintile totals. The result of this division was multiplied by the result obtained in 3e4 in each category. The calculation followed the same template as laid out in 2b1f.

f. Intended pregnancies
Intended pregnancies are the sum of intended births and estimated miscarriages of intended conceptions.

3f1: By region:

#intended pregnancies_{\text{all ♀}_{region(i)}} = #wanted births_{\text{all ♀}_{region(i)}} + miscarriages_{\text{wanted conceptions}_{region(i)}}

Data:
1. All components on the right-hand side of the equation were obtained from 3c1 and 3e2.

3f2: By wealth quintile:

#intended pregnancies_{\text{all ♀}_{WQ(i)}} = #wanted births_{\text{all ♀}_{WQ(i)}} + miscarriages_{\text{wanted conceptions}_{WQ(i)}}

Data:
1. All components on the right-hand side of the equation were obtained from 3c3 and 3e4.

g. Unintended pregnancies

Unintended pregnancies are the sum of unplanned births, induced abortions and estimated miscarriages following unintended conceptions. The calculation is set up as follows:

3g1. By region:

\[
\text{#unintended pregnancies}_{\text{reg}(i)}^{\text{all } \varphi} = \text{#induced abortions}_{\text{reg}(i)}^{\text{all } \varphi} + \text{miscarriages}_{\text{reg}(i)}^{\text{all } \varphi} + \text{births wanted later}_{\text{reg}(i)}^{\text{all } \varphi} + \text{births never wanted}_{\text{reg}(i)}^{\text{all } \varphi}
\]

Data:

1. The components for the right-hand side of the equation were obtained from 3c1, 3d1 and 3e1.

3g2. By wealth quintile:

\[
\text{#unintended pregnancies}_{WQ(i)}^{\text{all } \varphi} = \text{#induced abortions}_{WQ(i)}^{\text{all } \varphi} + \text{miscarriages}_{WQ(i)}^{\text{all } \varphi} + \text{births wanted later}_{WQ(i)}^{\text{all } \varphi} + \text{births never wanted}_{WQ(i)}^{\text{all } \varphi}
\]

Data:

1. The components for the right-hand side of the equation were obtained from 3c3, 3d2 and 3e3.

h. Outcomes of unintended pregnancies

Unintended pregnancies were distributed according to outcome (birth, induced abortion or miscarriage), based on the regional distributions estimated from the 2017–2018 PDHS birth rates and intention status information, 2012 induced abortion rates and model-based miscarriage rates. The calculations are as described above.

i. Pregnancy intentions and outcomes for alternate scenarios of modern contraceptive use

The estimates of pregnancy intentions and outcomes for scenarios 1 and 3 were calculated using formulas provided in the next section.

4. Unintended pregnancies among women at risk by method and unmet need (using contraceptive failure rates)

In addition to computing the number of unintended pregnancies among women at risk, using a combination of PDHS and census data (see section 3 above), we also computed the numbers of unintended pregnancies among women at risk, using contraceptive failure rates data. The reason for making this alternative estimate is to develop adjusted failure rates (see below),
which are needed to estimate unintended pregnancies in the scenario in which all of current unmet need is met.

We multiplied the annual pregnancy rates among a) women using contraceptive methods, and b) among women at risk for unintended pregnancy who were using no method, by the estimated numbers of women in Pakistan in 2017–2018, to estimate the current number of unintended pregnancies. The calculations used the current contraceptive mix.

a. Initial/unadjusted failure rates
Table 2 shows the initial or unadjusted failure rates used in the study. These were obtained from special tabulations of data from Darroch (2018). "

Table 2. Unadjusted contraceptive failure rates, Pakistan, 2017

<table>
<thead>
<tr>
<th>Contraceptive method</th>
<th>Failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sterilization</td>
<td>0.5</td>
</tr>
<tr>
<td>Male sterilization</td>
<td>0.2</td>
</tr>
<tr>
<td>Pill</td>
<td>5.2</td>
</tr>
<tr>
<td>IUD</td>
<td>0.8</td>
</tr>
<tr>
<td>Injectable</td>
<td>1.8</td>
</tr>
<tr>
<td>Implant</td>
<td>6.1</td>
</tr>
<tr>
<td>Condom</td>
<td>6.6</td>
</tr>
<tr>
<td>Other supply</td>
<td>6.6</td>
</tr>
<tr>
<td>Periodic abstinence</td>
<td>14.6</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>12.9</td>
</tr>
<tr>
<td>Other non-supply methods</td>
<td>18.2</td>
</tr>
<tr>
<td>No protection/nonuse of method</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Note: These are typical use failure rates and refer to the percentage of women experiencing an unintended pregnancy during the first year of typical use of contraception.
Source: Reference 29.

For women at risk for unintended pregnancy using no method, we assumed an annual pregnancy rate of 40%. The 40% estimate is much lower than the 85% annual pregnancy rate that Trussell et al. (2018) estimate for couples who are continually sexually active. Some studies have suggested, however, that couples at risk for unintended pregnancy who are using no contraceptive method are not continually sexually active.

4a1. The unadjusted unintended pregnancy numbers from the contraceptive failure rates data were obtained as follows:
#UIP due to cp failure\textsuperscript{sp,lt,nonuse,\textbf{reg}(i)} = \sum (\#\textsuperscript{method type, sp,lt,nonuse,\textbf{reg}(i)} \times \text{unadj. cp failure rate}\textsuperscript{method type,\textbf{reg}(i)})

Data:
1. The number of women at risk who are using specific methods/not using any method by region was obtained from calculations shown in 2b1c and 2b1d.
2. The unadjusted contraceptive failure rate for each method was obtained from the values shown in table 2.

b. Failure rate adjustment
The number of pregnancies, based on current contraceptive use among women at risk for unintended pregnancy and the initial failure rates for each method, differed in all regions from the number of unintended pregnancies estimated using the PDHS intention status variable (discussed in section 3 above). This is likely due, in part, to the fact that many unintended pregnancies that end in induced abortion are not reported in the PDHS or other surveys of women. Therefore, the initial failure rates for each method were adjusted so that the number of unintended pregnancies calculated in each region equaled the number estimated from intention status.

The same regional adjustments were applied to the initial typical use failure rates for all methods and the nonuse pregnancy rate used for all women in the same region, regardless of household wealth.

4b1. The adjustment factor was calculated as follows:

\[
\text{Adjustment factor}_{\text{reg}(i)} = \frac{\#UIP (abortions + miscarriages from UIP + mistimed+unwanted births)_{\text{reg}(i)}}{\#UIP due to method failure_{\text{sp,lt,non use,\textbf{reg}(i)}}}
\]

Data:
1. The number of unintended pregnancies from summing the abortions, unwanted births and miscarriages from unintended pregnancy was obtained from 3g1.
2. The number of unintended pregnancies from failure rates was obtained from 4a1.

4b2. The adjusted contraceptive failure rates were computed as follows:

\[
\text{Adjusted failure rate}_{\text{method type,\textbf{reg}(i)}} = \text{Unadjusted cp failure rate}_{\text{method type,\textbf{reg}(i)}} \times \text{Adjustment factor}_{\text{reg}(i)}
\]

Data:
1. The unadjusted contraceptive failure rate was obtained from table 2.
2. The adjustment factor was obtained from calculations shown in 4b1.

4b3. Revised unintended pregnancy numbers using adjusted failure rates:
#UIP due to cp failure\(\text{method type}\)\(\text{reg(i)}\) = #\(\Diamond\) at risk\(\text{method type, sp.lt, nonuse}\)\(\text{adj}\) adjusted failure rates

Data:
1. The number of women at risk using contraceptives or those not using, by method type, and by spacing and limiting was obtained from the calculations shown in 2b1e.
2. The adjusted failure rates for each method were obtained from 4b2.

c. Unintended pregnancies by wealth quintile:

4c1. Unintended pregnancies from unadjusted failure rates by wealth quintile:

\[
\text{#unadj. UIP from method failure}_{\text{WQ}(i)}\text{method type or unmet need} = \sum \text{#}\text{♀}_{\text{WQ}(i)}\text{method type, sp, lt, unmet need} \times \text{unadj. failure rate}
\]

Data:
1. The number of women by method type in each wealth quintile was obtained from calculations shown in 2b1f.
2. The unadjusted failure rate for each method was obtained from table 2.

4c2. Adjustment factor:

\[
\text{Adjustment factor}_{\text{WQ}(i)} = \frac{\text{#unadj. UIP (abortions+miscarriages from UIP+mistimed+unwanted births)}_{\text{WQ}(i)}}{\sum \text{#unadj. UIP from method failure}_{\text{WQ}(i)}\text{method type or unmet need}}
\]

Data:
1. The unadjusted unintended pregnancy numbers computed as a sum of abortions, unintended births and unintended miscarriages was obtained from 3g2.
2. The denominator was obtained from 4c1.

4c3. Adjusted failure rate:

\[
\text{Adjusted failure rate}_{\text{WQ}(i)}\text{method type or unmet need} = \text{Unadjusted failure rate}_{\text{WQ}(i)}\text{method type or unmet need} \times \text{Adjustment rate}
\]

Data:
1. The unadjusted failure rate by wealth quintile was obtained from 4c1.
2. The adjustment rate was obtained from 4c2.

4c4. Adjusted number of unintended pregnancies by wealth quintile using adjusted failure rates:

\[
\text{#UIP from method failure}_{\text{WQ}(i)}\text{method type or nonuse} = \text{#} \text{♀} \text{at risk}_{\text{WQ}(i)}\text{method type or nonuse} \times \text{adj. failure rate}
\]

Data:
1. The number of women at risk using contraceptives or those not using, by method type, and by spacing and limiting was obtained from the calculations shown in 2b1f.
2. The adjusted failure rates for each method were obtained from 4c3.

d. Pregnancy outcomes by type of method use

1. Scenario 2: Current contraceptive use

4d1a. Unintended pregnancies:

\[\# \text{UIP}_{\text{reg}(i), \text{scen}2}^{\text{nonuse/method use by type}} = \# \text{♀}_{\text{reg}(i), \text{scen}2}^{\text{nonuse/meth users by type}} \times \text{adjusted cp failure rate}_{\text{reg}(i)}^{\text{nonuse/method type}} \]

Data:
1. The number of women modern/traditional method users by type and nonusers was obtained from calculations shown in 2b1c and 2b1d.
2. The adjusted contraceptive failure rate was obtained from calculations shown in 4b2.

2. Scenario 1. Zero contraceptive use

4d2a. For scenario 1, all users of modern methods in scenario 2 and those with unmet need in scenario 2 are considered as having an unmet need.

\[\# \text{♀}_{\text{unmet need}}^{\text{scen 1, region(i)}} = \# \text{♀}_{\text{unmet need}}^{\text{region(i), scen 2}} + \# \text{♀}_{\text{modern method users}}^{\text{region(i), scen 2}} \]

Data:
1. The data for numbers of women with unmet need by region was obtained from the calculations shown in 2b1b1.

4d2. Number of unintended pregnancies in scenario 1:

\[\# \text{UIP}_{\text{region(i), scen 1}}^{\text{nonuse of mod cp}} = \# \text{♀}_{\text{unmet need}}^{\text{region(i), scen 1}} \times \text{adjusted contraceptive failure for ♀ with unmet need} \]

Data:
1. The number of women with unmet need by region in scenario was obtained from 4d1.
2. The adjusted contraceptive failure rate for women with unmet need was obtained from 4b2.

4d3. Number of induced abortions in scenario 1:

\[\# \text{induced abortions}_{\text{region (i), scen 1}}^{\text{nonuse of mod cp}} = \frac{\# \text{UIP}_{\text{region (i), scen 1}}^{\text{non use of mod cp}} \times \# \text{induced abortions}_{\text{reg (i)}}^{\text{scen 2}}}{\# \text{UIP}_{\text{reg (i)}}^{\text{scen 2}}} \]

Data:
1. The numbers of unintended pregnancies for nonuse of contraception by region for scenario 1 was obtained from 4d2.
2. The number of induced abortions and unintended pregnancies in scenario 2 was obtained from 3d1 and 3g1.

4d4. Number of unplanned births in scenario 1:

\[
\text{# unplanned births}_{\text{nonuse of mod cp}} = \frac{\text{# UIP}_{\text{nonuse of mod cp}} \times (1 + \text{ratio of miscarriages to induced abortions})}{1 + \text{ratio of miscarriages to births}}
\]

Data:
1. The number of unintended pregnancies for nonuse of contraception by region in scenario 1 was obtained from 4d2.
2. The number of induced abortions by region in scenario 1 was obtained from 4d3.
3. The ratio of miscarriages to induced abortions is a model-based estimate, computed to be 0.1, while the ratio of miscarriages to births is also a model-based estimate, computed to be 0.2.27

Scenario 3. Full unmet need for modern contraception is met

4d4. Number of women who are modern method users in scenario 3:

\[
\# \text{♀ all modern method users}_{\text{scen 3, reg(i)}} = \# \text{♀ with unmet need}_{\text{scen 2, reg(i)}} + \# \text{♀ modern method users}_{\text{scen 2, reg(i)}}
\]

Data:
1. The components on the right-hand side of the equation were obtained from calculations shown in 2b1e.

4d5. Number of women users by modern method type in scenario 3:

\[
\# \text{♀ mod meth users}_{\text{method type, sp or lt.}, \text{scen 3, reg(i)}} = \# \text{♀ all users of mod meth}_{\text{scen 3, reg(i)}} \times \frac{\% \text{♀ users}_{\text{method type}, \text{scen 2, reg(i)}}}{\% \text{♀ all modern meth users}_{\text{scen 2, reg(i)}}}
\]

Data:
1. The total number of women who used modern methods in scenario 3 by region was obtained from 4d4.
2. The percentage of women who used each method in scenario 2 and the total percentage of all modern method users in scenario 2 was obtained from the 2017–2018 PDHS.8

4d6. Number of unintended pregnancies in scenario 3:

\[
\# \text{UIP}_{\text{modern use failures}, \text{reg(i), scen 3}} = \# \text{♀ mod meth users}_{\text{method type, sp or lt.}, \text{scen 3, reg(i)}} \times \text{contraceptive failure}_{\text{reg(i)}}
\]
Data:

1. The number of women who were modern method users by method type and region was obtained from 4d5.
2. The contraceptive failure rate by method type was obtained from 4b2.

4d7. Number of induced abortions in scenario 3:

\[
\text{#induced abortions}_{\text{modern use failures}}^{\text{scen3}, \text{reg}(i)} = \frac{\text{#UIP}_{\text{modern use failures}}^{\text{scen 3}, \text{reg}(i)} \times \text{#induced abortions}_{\text{scen 2}, \text{reg}(i)}}{\text{#UIP}_{\text{scen 2}, \text{reg}(i)}^{\text{modern use failures}}}
\]

Data:

1. The number of unintended pregnancies in scenario 3 for each region was obtained from 4d6.
2. The numbers of induced abortions and the numbers of unintended pregnancies by region were obtained from 3d1 and 3g1.

4d8. Number of unplanned births in scenario 3:

\[
\text{# unint. births}_{\text{modern use failures}}^{\text{reg (i), scen (3)}} = \frac{\text{# UIP}_{\text{reg (i), scen 3}}^{\text{modern use failures}} \times \text{# induced abortions}_{\text{reg(i), scen3}}^{\text{modern use failures}} \times \left(1 + \frac{\text{ratio of miscarriages to induced abortions}}{1 + \frac{\text{ratio of miscarriages to births}}{1}}\right)}{\text{#UIP}_{\text{reg(i), scen3}}^{\text{modern use failures}}}
\]

5. Pregnancy-related mortality and morbidity

a. Pregnancy-related deaths among women, by outcome

The number of pregnancy-related deaths was projected to 2017 using the region-level estimates of maternal deaths in the 2006–2007 PDHS, sociodemographic and maternal and newborn health indicators from the 2017–2018 PDHS and the maternal mortality regression model used to estimate maternal mortality by the World Health Organization, UNICEF and UNFPA.8,16,17,31 For regions included in this report with no MMR or abortion estimates, we used the national estimates. Because we did not have information to estimate MMR by wealth status, each wealth quintile was assumed to have the national MMR estimate, a limitation in the methodology.

The calculations were set up as follows:

Scenario 2 by region

5a1. Number of maternal deaths among wanted births:

\[
\text{#Maternal deaths}_{\text{wanted births}}^{\text{region(i)}} = \frac{\text{Maternal mortality ratio}_{\text{DHS}} \times \# \text{ wanted births}_{\text{region (i)}}}{100,000}
\]

Data:
1. The maternal mortality ratio was projected using information from the 2006–2007 PHDS, 2017–2018 PDHS and WHO, UNICEF and UNFPA.8,16,31

2. The number of unwanted births was obtained from calculations shown in 3c1.

5a2. Number of maternal deaths among unwanted births:

\[
\text{#Maternal deaths}_{\text{region}(i)}^{\text{unwanted births}} = \frac{\text{Maternal mortality ratio}_{\text{DHS}} \times \text{# unwanted births}_{\text{region}(i)}}{100,000}
\]

Data:
1. The maternal mortality ratio was projected using information from the 2006–2007 PHDS, 2017–2018 PDHS and WHO, UNICEF and UNFPA.
2. The number of unwanted births was obtained from calculations shown in 3c1.

5a3. Total number of maternal deaths among all births:

\[
\text{#Maternal deaths}_{\text{region}(i)}^{\text{all births}} = \text{#Maternal deaths}_{\text{region}(i)}^{\text{wanted births}} + \text{#Maternal deaths}_{\text{region}(i)}^{\text{unwanted births}}
\]

Data:
1. The right-hand side of the equation is obtained from 5a1 and 5a2.

5a4. Total number of maternal deaths across all regions:

\[
\text{# Maternal deaths}_{\text{Pakistan}}^{\text{all births}} = \sum \text{#maternal deaths}_{\text{region}(i)}^{\text{all births}}
\]

5a5. Maternal deaths by alternate use scenarios:

We made similar calculations for alternative scenarios of modern contraceptive use. The calculations for wanted and unwanted births by scenario are shown above in section 3c1.

b. Disability-adjusted life years (DALYs) incurred by pregnant women, 2017

We obtained the number of DALYs related to maternal conditions from the Institute for Health Metrics and Evaluation Global Burden of Disease Tool, 2017.18 We assumed that rates of maternal DALYs for Pakistan as a whole applied across all regions of the country and wealth quintiles. Again, this is a weak assumption because rates of DALYs most likely vary by rural-urban residence and by income group, but it is unavoidable, since the DALYs by subgroups are not available.

5b1. The DALYs for all scenarios were computed as follows:
\[
\text{DALYS}^{\text{scenario (j)}}_{\text{region (i)}} = \frac{\#\text{Pregnancies}^{\text{intention status, scenario (j)}}_{\text{region (i)}}}{\#\text{All pregnancies}^{\text{scenario (j)}}_{\text{region (i)}}} \times \text{Total DALYS from maternal conditions}
\]

Data:

1. The total numbers of pregnancies and pregnancies by intention status and scenario were obtained from calculations shown in sections 3f1 and 3g1.
6. Maternal and newborn health care interventions

We obtained the list of interventions, the percentage of women in need of the interventions and the percentage of women currently covered by each intervention from Darroch (2018), with the exception of the interventions listed below. Not all pregnant women need each intervention. For those interventions not required by all pregnant women, the value for the percentage covered was divided by the percentage of women who require such care, in order to estimate the percentage covered only among those who need the care.

The percentage in need of post-abortion care (PAC) by region was obtained from the Sathar et al. study on abortion and PAC in Pakistan. We used national proportions in need of PAC for Gilgit-Baltistan, Islamabad Capital Territory, Federally Administered Tribal Areas, and Azad Jammu and Kashmir because information was not available for these regions. Because this study did not include information on the PAC need for specific interventions, we used proxy values calculated from a recent abortion and PAC study in Bangladesh to estimate these specific interventions.

- PAC: Incomplete abortion/hemorrhage
- PAC: Shock
- PAC: Uterine perforation/cervical laceration
- PAC: Sepsis

We used the 2017–2018 PHDS to obtain the coverage of the following interventions:

- Basic antenatal care (4+ visits)
- Tetanus toxoid
- Hookworm treatment
- Daily iron supplementation
- Essential care for all women with routine vaginal delivery: delivery by a skilled birth attendant
- Essential care for all newborns: delivery by a skilled birth attendant
- Cesarean section
- Preventive postpartum care

For the interventions listed above, the 2017–2018 PDHS also provides coverage percentages by each region of Pakistan. For the interventions not covered by the PDHS, we used national coverage proportions estimated in Adding It Up: Investing in Contraception and Maternal and Newborn Health, 2017—Estimation Methodology. To obtain region-level coverage percentages, we used the distribution proportions of other key inventions such as “Basic
antenatal care,” “Emergency obstetric Care (EmOC)” and “Delivery in a health facility” that are linked to the interventions not covered by the DHS to adjust the national coverage proportions across regions. For example, to get coverage percentages at the subnational level for hypertensive disease care management, we used the estimated national proportion of coverage estimated in Darroch 2018 (23%) and adjusted the regional proportions of women receiving basic antenatal care to estimate coverage across regions (10–36%). For interventions such as pre-eclampsia case management, antenatal hemorrhage management and prolonged labor, we used the regional proportions of EmOC (50% of women who receive cesarean sections) to adjust and estimate subnational estimates. For interventions such as active management of third-stage labor, pre-referral management of labor complications and induction of labor, we used the regional values for delivery in a health facility as a proxy to adjust and estimate subnational coverage proportions (for a full list of interventions, see table 3).

6a. The percentage of women in each region covered by each intervention not included in the 2017–2018 PDHS was estimated as follows:

\[
\% \text{covered}_{\text{region}(i)}^{\text{scenario} \ 2, \text{intervention type}} = \% \text{covered for intervention}_{\text{Pakistan, Darroch}}^{\text{scenario} \ 2, \text{intervention type}}
\]

Data:
1. The percentage of women at the country level who were covered for an intervention not included in the DHS was obtained from Darroch (2018).29
2. The percentage of women covered at the region level, for an intervention included in the PDHS, was obtained from the 2017–2018 PDHS.8

6b. The number of women and newborns requiring MNH care by intervention type and scenario and by region was calculated as follows:

\[
\text{# \♀ and newborns requiring MNH care}_{\text{region}(i), \text{intervention type}, \text{scenario} \ (j)} = \left(\text{# births}_{\text{region}(i), \text{scenario} \ (j)} + 50\% \left(\text{# abortions}_{\text{region}(i), \text{scenario} \ (j)} \right) \right) r\% \text{requiring intervention}_{\text{intervention type}}
\]

Data:
3. Number of births by region, intention status and scenario was computed using the calculations shown in 3c1.
4. Number of abortions by scenario and region was computed using calculations shown in 3c3.
5. Percentage requiring the intervention was obtained from calculations shown in 6a.
6c. The number of women and newborns requiring MNH care by intervention type, scenario and wealth status was calculated as follows:

\[
\text{\# women and newborns requiring MNH care by \(WQ \) and \(\text{scenario} \), wealth status} = (\text{\# births \(WQ \), scenario \(\text{scenario} \), wealth status} + 50\% \text{\# abortions \(WQ \), scenario \(\text{scenario} \), wealth status}) \times Q\% \text{requiring intervention type}
\]

Data:
1. Number of births by region, intention status and scenario was computed using the calculations shown in 3c1.
2. Number of abortions by scenario and region was computed using calculations shown in 3c3.
3. Percentage requiring the intervention was obtained from calculations shown in 6a.

7. Cost of providing contraceptive care and maternal and newborn health care

For this analysis, we estimated costs separately for each contraceptive commodity and for each maternal and newborn health intervention. For each, we estimated total direct costs as well as indirect costs. Direct costs include the cost of contraceptive commodities, drugs and supplies, and labor (see tables 4 and 5 for full list of ingredients that were included in direct costs); indirect costs include management, infrastructure, transport and other overheads. Both categories were computed using the methods outlined in Darroch (2018). All costs were estimated in 2017 U.S. dollars.

The costs of the various ingredients needed to compute regional and national costs were obtained from two main sources in Pakistan (see table 5 for the ingredients):
- We obtained average unit costs for contraceptives, as well as all drugs and supplies needed for contraceptive care and maternal and newborn health care, from the UNICEF Supply Catalogue.
- The 2017 average salary data for medical personnel were obtained from the Ministry of Finance.

7a. The total cost of a contraceptive commodity by each scenario and by region was estimated as follows:

\[
\$ \text{cost for all users} = \# \text{women} \times \text{total unit cost}
\]

Data:
1. The number of women using each method by scenario and region was obtained from calculations shown in 2b1e.
2. The total unit cost per contraceptive commodity was obtained using methods shown in Darroch (2018).29

7b. The total cost of an MNH intervention by each scenario and by region was estimated as follows:

$\text{cost for all users}_{\text{scenario (i), region (i)}} = \# \text{♀ and newborns requiring care}_{\text{scenario (i), region (i)}} \times \text{total unit cost}_{\text{scenario (i), region (i)}}$

Data:
1. The number of women requiring each intervention by scenario and region was obtained from calculations shown in 6b.
2. The total unit cost per MNH intervention was obtained using methods shown in Darroch (2018).29

Table 3. List of MNH interventions and the DHS interventions used as proxies for estimating distribution of women covered by region

<table>
<thead>
<tr>
<th>MNH Intervention</th>
<th>DHS/other source intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenatal care</td>
<td></td>
</tr>
<tr>
<td>1. Basic antenatal care</td>
<td>from DHS data</td>
</tr>
<tr>
<td>2. Tetanus toxoid</td>
<td>from DHS data</td>
</tr>
<tr>
<td>3. Syphilis screening</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>4. Syphilis treatment for seropositive women</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>5. Hypertensive disease care management</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>6. Pre-Eclampsia case management - Mild cases < 37 weeks</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>7. Pre-Eclampsia case management - Mild cases > 37 weeks</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>8. Pre-Eclampsia case management - Severe Cases</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>9. Hookworm treatment</td>
<td>from DHS data</td>
</tr>
<tr>
<td>10. Malaria prevention—Insecticide-treated bed nets</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>11. Malaria prevention—Intermittant preventive treatment in pregnancy (IPT)</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>12. Malaria screening and treatment</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>13. Anemia Screening</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14. Daily Iron and Folic Acid Supplementation
(anemic pregnant women)</td>
<td>from DHS data</td>
</tr>
<tr>
<td>15. Intermittent Iron and Folic Acid
Supplementation (Nonanemic pregnant women - 1 month care)</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>16. Urinary Tract Infection</td>
<td>Basic antenatal care</td>
</tr>
<tr>
<td>17. Ectopic pregnancy case management</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>Labor, delivery and postpartum care</td>
<td></td>
</tr>
<tr>
<td>18. Antenatal Corticosteroids for Preterm Labor</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>19. Antibiotics for Premature Rupture of Membranes (pPROM)</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>20. Induction of Labor (>41 weeks)</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>21. Essential care for all women with routine vaginal delivery</td>
<td>from DHS data</td>
</tr>
<tr>
<td>22. Essential care for all newborns</td>
<td>from DHS data</td>
</tr>
<tr>
<td>23. Active Management of Third Stage of Labor</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>24. Prereferral Management of Labor Complications</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>25. Antepartum Hemorrhage Management</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>26. Prolonged Labor</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>27. Cesarean section</td>
<td>from DHS data</td>
</tr>
<tr>
<td>28. Assisted Vaginal Delivery</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>29. Management of Eclampsia</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>30. Maternal Sepsis case management</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>31. Postpartum Hemorrhage</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>32. Preventive postnatal care</td>
<td>from DHS data</td>
</tr>
<tr>
<td>33. Mastitis Care</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>34. Obstetric Fistula</td>
<td>EmOC (50% of C-section)</td>
</tr>
<tr>
<td>35. Counseling and Support for Breast-Feeding</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>Newborn care</td>
<td></td>
</tr>
<tr>
<td>36. Newborn Resuscitation (Institutional Deliveries)</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>37. Newborn Local Infections</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>38. Management of Newborn Syphilis</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>39. Kangaroo Mother Care</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>40. Treatment of Low Birth Weight</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>41. Management of Severe Infection for Neonates—Injectable Antibiotics</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>42. Management of Severe Infection for Neonates—Full Supportive Care</td>
<td>Institutional delivery</td>
</tr>
<tr>
<td>43. Newborn Vaccines—BCG Vaccine</td>
<td>Institutional delivery</td>
</tr>
</tbody>
</table>
44. Newborn Vaccines—Hepatitis B Vaccine Institutional delivery
45. Newborn Vaccines—Polio Vaccine Institutional delivery

Postabortion care (PAC)

46. PAC - Incomplete abortion Sathar et al. (2014)
47. PAC – Shock Sathar et al. (2014)
48. PAC - Uterine perforation/cervical laceration Sathar et al. (2014)
49. PAC – Sepsis Sathar et al. (2014)

Table 4. List of personnel used for calculating direct costs

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstetrician</td>
<td>Technical Resource Facility (TRF)</td>
</tr>
<tr>
<td>General physician/Medical officer</td>
<td>Technical Resource Facility (TRF)</td>
</tr>
<tr>
<td>Nurse/Midwife</td>
<td>Technical Resource Facility (TRF)</td>
</tr>
<tr>
<td>Lady Health Visitor (LHV)</td>
<td>Technical Resource Facility (TRF)</td>
</tr>
<tr>
<td>Lady Health Worker (LHW)</td>
<td>Technical Resource Facility (TRF)</td>
</tr>
</tbody>
</table>

Source: References 24-26

Table 5. List of drugs and supplies included in cost estimates

<table>
<thead>
<tr>
<th>Drug /Supply Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylic acid, tab, 75mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Albendazole, tablet, 400mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Amoxicillin, caplet, 250 mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Amoxicillin, powder/oral suspension, 125mg/5ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Ampicillin, powder for injection, 500mg, vial</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Antenatal care record</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Artemether + Lumefantrine, tablets, 20+120mg, 6x1 blister</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Artesunate + Amodiaquine, tablets, 50mg+135mg, 3+3 blister</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Artesunate + SP, tablets, 50mg+500mg+25mg, 3+1 blister</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Artesunate, vial, 60mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Atropine sulphate, injection, 1 mg in 1ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>AZT solution 10mg/ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Bag, urine, collecting, 2000ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Item</td>
<td>Catalogue</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>BCG vaccine</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Benzathine benzylpenicillin, powder for injection, 2.4 million IU</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Betamethasone, 12mg injection</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Blade, surgical, no. 22, sterile, disposable</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Blood collecting tube, 5ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Blood culture</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Blood type and cross-match</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Calcium carbonate, tablet, 600mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Cannula, IV, 18G, sterile, disposable</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Cefazolin, ampoule, 500 mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Ceftriaxone, powder for injection, 250 mg vial</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Chlorhexidine surgical scrub, 5ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Ciprofloxacin, tablet, 250mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Clean delivery kit</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Clindamycin, tab, 300mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Complete blood count</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Condom, male</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Cotton swab</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Delivery record</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Diazepam, injection, 5mg/ml in 2-ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Doxycycline, tablet, 100mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Drawsheet, plastic, 90x180cm</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Epinephrine, ampoule, 1mg/ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Erythromycin, tablet, 250 mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Erythromycin estolate 125 mg base/5 ml oral suspension, 100 ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Ferrous Salt + Folic Acid, tablet, 200+0.4mg (60mg iron)</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Foley catheter</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Folic acid, tablet, 5mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Gauze pad, 10 x 10cm, sterile</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Gentamicin, injection, 40 mg/ml in 2ml vial</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Gentian violet, powder 25mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Gloves, exam, latex, disposable, pair</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Gloves, surgeon’s, latex, disposable, sterile, pair</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Item</td>
<td>Supplier</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Glucose injection 5%, 500ml with giving set</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Hemoglobin test strip</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Hep B vaccine</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Hib vaccine</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>HIV EID (Early Infant Diagnosis Test) Assay Renewables</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>HIV EID Dry Blood Spot (DBS) Collection kit</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>HIV Rapid Detection Test (STAT-PAK HIV1/2,dipstick)</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>HIV Confirmatory test (MP Biomedical HIV BLOT 2.2)</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>HPV vaccine</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Hydralazine, powder for injection, 20mg ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Insecticide-Treated Net</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>IV giving/infusion set, with needle</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Ketamine, 10ml vial, 50mg/ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Lancet, blood, disposable</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Lidocaine HCl (in dextrose 7.5%), ampoule 2ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Lidocaine, injection, 1% in 20 ml vial</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Magnesium sulfate, injection, 500 mg/ml in 10-ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Malaria test kit (RDT)</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Mebendazole, chewable tablet, 500 mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Metronidazole, injection, 500 mg in 100 ml vial</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Metronidazole, tablet, 500mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Mifepristone, tablet, 200mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Misoprostol, tablet, 200mcg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Nevirapine, oral solution, 10mg/ml</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Nifedipine, tab-cap, 10mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Oxygen, 1000 liters, primarily with oxygen cylinders</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Oxytocin, injection, 10 IU in 1 ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Paracetamol, tablet, 500 mg</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Partograph</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Pethidine, 50 mg/ml, 2ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Item</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Polio vaccine</td>
<td></td>
</tr>
<tr>
<td>Pregnancy test</td>
<td></td>
</tr>
<tr>
<td>Procaine benzylpenicillin, powder for</td>
<td></td>
</tr>
<tr>
<td>injection, 1 g (= 1 million IU) in vial</td>
<td></td>
</tr>
<tr>
<td>Quinine, injection, 300mg/ml, 2ml</td>
<td></td>
</tr>
<tr>
<td>Quinine sulphate, tab, 300 mg</td>
<td></td>
</tr>
<tr>
<td>Razor blade, stainless steel</td>
<td></td>
</tr>
<tr>
<td>Resuscitator, hand-operated, infant/child/set</td>
<td></td>
</tr>
<tr>
<td>Safety box for used syringes/needles, 5</td>
<td></td>
</tr>
<tr>
<td>Sodium chloride, injectable solution, 0,9%</td>
<td></td>
</tr>
<tr>
<td>Sodium lactate injection (Ringer's),</td>
<td></td>
</tr>
<tr>
<td>500ml, with giving set</td>
<td></td>
</tr>
<tr>
<td>Sulfadoxine + pyrimethamine, tablet 500mg</td>
<td></td>
</tr>
<tr>
<td>Suture, absorbable, synthetic, 2/0,</td>
<td></td>
</tr>
<tr>
<td>curved needle</td>
<td></td>
</tr>
<tr>
<td>Suture, catgut, chromic, 0, needle</td>
<td></td>
</tr>
<tr>
<td>Suture, non-absorbable, synthetic, 2/0,</td>
<td></td>
</tr>
<tr>
<td>needle</td>
<td></td>
</tr>
<tr>
<td>Suture, non-absorbable, synthetic, 3/0,</td>
<td></td>
</tr>
<tr>
<td>curved needle</td>
<td></td>
</tr>
<tr>
<td>Syringe, auto-disable, 0.5ml, with needle</td>
<td></td>
</tr>
<tr>
<td>Syringe, auto-disable, BCG, 0.1ml, with</td>
<td></td>
</tr>
<tr>
<td>needle</td>
<td></td>
</tr>
<tr>
<td>Syringe, needle+ swab</td>
<td></td>
</tr>
<tr>
<td>TDF + 3TC + EFV</td>
<td></td>
</tr>
<tr>
<td>TDF + FTC + EFV</td>
<td></td>
</tr>
<tr>
<td>Test strips, urine analysis</td>
<td></td>
</tr>
<tr>
<td>Test, blood glucose</td>
<td></td>
</tr>
<tr>
<td>Test, blood group, anti A + B, 10 ml</td>
<td></td>
</tr>
<tr>
<td>Test, hemoglobin</td>
<td></td>
</tr>
<tr>
<td>Test, Rapid plasma reagin (RPR)</td>
<td></td>
</tr>
<tr>
<td>Tetanus toxoid, injection</td>
<td></td>
</tr>
<tr>
<td>Tetracycline eye ointment, 1%, tube</td>
<td></td>
</tr>
<tr>
<td>5mg</td>
<td></td>
</tr>
<tr>
<td>Tetracycline, tablet, 250mg</td>
<td></td>
</tr>
<tr>
<td>Umbilical cord clamp, sterile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Water for injection, 10 ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Water for injection, 5 ml ampoule</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Contraceptives</td>
<td>Source</td>
</tr>
<tr>
<td>Condom, Male</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Implant – Jadelle</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Injectable, 3-monthly</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>IUD – Copper</td>
<td>UNICEF Supply Catalogue</td>
</tr>
<tr>
<td>Pill – Combined</td>
<td>UNICEF Supply Catalogue</td>
</tr>
</tbody>
</table>

Source: Reference 21
References

